Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cells Int ; 2016: 6962801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143978

RESUMO

Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration.

4.
Sci Signal ; 7(344): re8, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25249658

RESUMO

The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor ß (TGF-ß) and bone morphogenetic protein (BMP), Wnt-ß-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Transdução de Sinais/fisiologia , Animais , Adesão Celular , Moléculas de Adesão Celular/fisiologia , Hipóxia Celular/genética , Microambiente Celular , Citoesqueleto/ultraestrutura , Desenvolvimento Embrionário , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/fisiologia , Fibrose , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Metástase Neoplásica , Proteínas de Neoplasias/fisiologia , Neoplasias/patologia , Fenótipo , Receptor Cross-Talk/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica
5.
Histol Histopathol ; 29(10): 1281-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24796520

RESUMO

Heterotopic ossification (HO) is a debilitating condition in which cartilage and bone forms in soft tissues such as muscle, tendon, and ligament causing immobility. This process is induced by inflammation associated with traumatic injury. In an extremely rare genetic disorder called fibrodysplasia ossificans progessiva (FOP), a combination of inflammation associated with minor soft tissue injuries and a hereditary genetic mutation causes massive HO that progressively worsens throughout the patients' lifetime leading to the formation of an ectopic skeleton. An activating mutation in the BMP type I receptor ALK2 has been shown to contribute to the heterotopic lesions in FOP patients, yet recent studies have shown that other events are required to stimulate HO including activation of sensory neurons, mast cell degranulation, lymphocyte infiltration, skeletal myocyte cell death, and endothelial-mesenchymal transition (EndMT). In this review, we discuss the recent evidence and mechanistic data that describe the cellular and molecular mechanisms that give rise to heterotopic bone.


Assuntos
Ossificação Heterotópica/patologia , Animais , Humanos , Ossificação Heterotópica/tratamento farmacológico , Ossificação Heterotópica/genética
6.
Biomatter ; 3(3)2013.
Artigo em Inglês | MEDLINE | ID: mdl-23603799

RESUMO

Endothelial plasticity, the ability of endothelial cells to alter their lineage commitment to generate other cell types, is involved in many developmental and pathological processes. It was recently shown that vascular endothelial cells are converted to a mesenchymal stem cell phenotype through a process known as endothelial-mesenchymal transition (EndMT). EndMT is characterized as a morphological and phenotypical transformation of endothelial cells that has been implicated in cardiac development, cancer, fibrosis and heterotopic ossification. Here we describe the molecular and cellular basis for EndMT-dependent generation of endothelial-derived stem cells and their potential for tissue engineering and regenerative medicine.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Transição Epitelial-Mesenquimal , Células-Tronco/metabolismo , Engenharia Tecidual , Engenharia Biomédica , Humanos
7.
PLoS One ; 7(8): e42913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900063

RESUMO

Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1). VEGF is a known HIF-1 target gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1α siRNA. Over-expression of HIF-1α increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1α siRNA reduce proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be therapeutic targets for the treatment of hemangiomas.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hemangioma/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Sirolimo/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Comunicação Autócrina , Linhagem Celular , Proliferação de Células , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hemangioma/genética , Humanos , Fator 1 Induzível por Hipóxia/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
J Bone Miner Res ; 27(8): 1619-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22806925

RESUMO

Heterotopic ossification (HO) is a process by which bone forms in soft tissues, in response to injury, inflammation, or genetic disease. This usually occurs by initial cartilage formation, followed by endochondral ossification. A rare disease called fibrodysplasia ossificans progressiva (FOP) allows this mechanism to be induced by a combination of genetic mutation and acute inflammatory responses. FOP patients experience progressive HO throughout their lifetime and form an ectopic skeleton. Recent studies on FOP have suggested that heterotopic cartilage and bone is of endothelial origin. Vascular endothelial cells differentiate into skeletal cells through a mesenchymal stem cell intermediate that is generated by endothelial-mesenchymal transition (EndMT). Local inflammatory signals and/or other changes in the tissue microenvironment mediate the differentiation of endothelial-derived mesenchymal stem cells into chondrocytes and osteoblasts to induce HO. We discuss the current evidence for the endothelial contribution to heterotopic bone formation.


Assuntos
Endotélio/patologia , Mesoderma/patologia , Ossificação Heterotópica/patologia , Animais , Humanos , Modelos Biológicos , Ossificação Heterotópica/terapia
9.
Semin Cancer Biol ; 22(5-6): 379-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22554794

RESUMO

Vascular endothelial cells can demonstrate considerable plasticity to generate other cell types during embryonic development and disease progression. This process occurs through a cell differentiation mechanism known as endothelial-mesenchymal transition (EndMT). The generation of mesenchymal cells from endothelium is a crucial step in endothelial cell differentiation to several lineages including fibroblasts, myofibroblasts, mural cells, osteoblasts, chondrocytes, and adipocytes. Such differentiation patterns have been observed in systems of cardiac development, fibrosis, diabetic nephropathy, heterotopic ossification and cancer. Here we describe the EndMT program and discuss the current evidence of EndMT-mediated acquisition of stem cell characteristics and multipotent differentiation capabilities.


Assuntos
Transdiferenciação Celular , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Fenótipo , Animais , Transdiferenciação Celular/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
10.
Biochem J ; 437(3): 515-20, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21585337

RESUMO

EndMT (endothelial-mesenchymal transition) is a critical process of cardiac development and disease progression. However, little is know about the signalling mechanisms that cause endothelial cells to transform into mesenchymal cells. In the present paper we show that TGF-ß2 (transforming growth factor-ß2) stimulates EndMT through the Smad, MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase], PI3K (phosphinositide 3-kinase) and p38 MAPK signalling pathways. Inhibitors of these pathways prevent TGF-ß2-induced EndMT. Furthermore, we show that all of these pathways are essential for increasing expression of the cell-adhesion-suppressing transcription factor Snail. Inhibition of Snail with siRNA (small interfering RNA) prevents TGF-ß2-induced EndMT. However, overexpression of Snail is not sufficient to cause EndMT. Chemical inhibition of GSK-3ß (glycogen synthase kinase-3ß) allows EndMT to be induced by Snail overexpression. Expression of a mutant Snail protein that is resistant to GSK-3ß-dependent inactivation also promotes EndMT. These results provide the foundation for understanding the roles of specific signalling pathways in mediating EndMT.


Assuntos
Células Endoteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Smad/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta2/genética
11.
Matrix Biol ; 30(4): 243-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21477649

RESUMO

Discoidin domain receptor 2 (DDR2) is a collagen receptor that is expressed during epithelial-mesenchymal transition (EMT), a cellular transformation that mediates many stages of embryonic development and disease. However, the functional significance of this receptor in EMT is unknown. Here we show that Transforming Growth Factor-beta1 (TGF-ß1), a common stimulator of EMT, promotes increased expression of type I collagen and DDR2. Inhibiting expression of COL1A1 or DDR2 with siRNA is sufficient to perturb activity of the NF-κB and LEF-1 transcription factors and to inhibit EMT and cell migration induced by TGF-ß1. Furthermore, knockdown of DDR2 expression with siRNA inhibits EMT directly induced by type I collagen. These data establish a critical role for type I collagen-dependent DDR2 signaling in the regulation of EMT.


Assuntos
Transição Epitelial-Mesenquimal , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Caderinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Receptores com Domínio Discoidina , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética , Transcrição Gênica , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/metabolismo
13.
Nat Med ; 16(12): 1400-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102460

RESUMO

Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor-dependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell-like phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-ß2 (TGF-ß2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Células-Tronco Multipotentes/citologia , Miosite Ossificante/metabolismo , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Receptores de Ativinas Tipo I/genética , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem da Célula , Células Cultivadas , Células Endoteliais/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/metabolismo , Mutação/genética , Miosite Ossificante/genética , Oligonucleotídeos/genética , Interferência de RNA , Medicina Regenerativa/métodos , Fator de Crescimento Transformador beta2/metabolismo
14.
Matrix Biol ; 29(3): 161-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20018240

RESUMO

Collagen I has been shown to promote epithelial-mesenchymal transition (EMT), a critical process of embryonic development and disease progression. However, little is known about the signaling mechanisms by which collagen I induces this cellular transformation. Here we show that collagen I causes ILK-dependent phosphorylation of IkappaB and subsequent nuclear translocation of active NF-kappaB, which in turn promotes increased expression of the Snail and LEF-1 transcription factors. ILK also causes inhibitory phosphorylation of GSK-3beta, a kinase that prevents functional activation of both Snail and LEF-1. These transcription factors alter expression of epithelial and mesenchymal markers to initiate EMT and stimulate cell migration. These data provide a foundation for understanding the mechanisms by which collagen I stimulates EMT and identify potential therapeutic targets for suppressing this transition in pathological conditions.


Assuntos
Colágeno Tipo I/fisiologia , Matriz Extracelular/fisiologia , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , NF-kappa B/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Immunoblotting , Imuno-Histoquímica , Fator 1 de Ligação ao Facilitador Linfoide/genética , Mesoderma/metabolismo , Mesoderma/patologia , NF-kappa B/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
16.
Nat Med ; 14(11): 1236-46, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18931684

RESUMO

Infantile hemangiomas are localized and rapidly growing regions of disorganized angiogenesis. We show that expression of vascular endothelial growth factor receptor-1 (VEGFR1) in hemangioma endothelial cells (hemECs) and hemangioma tissue is markedly reduced compared to controls. Low VEGFR1 expression in hemECs results in VEGF-dependent activation of VEGFR2 and downstream signaling pathways. In hemECs, transcription of the gene encoding VEGFR1 (FLT1) is dependent on nuclear factor of activated T cells (NFAT). Low VEGFR1 expression in hemECs is caused by reduced activity of a pathway involving beta1 integrin, the integrin-like receptor tumor endothelial marker-8 (TEM8), VEGFR2 and NFAT. In a subset of individuals with hemangioma, we found missense mutations in the genes encoding VEGFR2 (KDR) and TEM8 (ANTXR1). These mutations result in increased interactions among VEGFR2, TEM8 and beta1 integrin proteins and in inhibition of integrin activity. Normalization of the constitutive VEGFR2 signaling in hemECs with soluble VEGFR1 or antibodies that neutralize VEGF or stimulate beta1 integrin suggests that local administration of these or similar agents may be effective in hemangioma treatment.


Assuntos
Regulação para Baixo , Hemangioma/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Bases , Proliferação de Células , Células Cultivadas , Células Endoteliais/enzimologia , Feminino , Hemangioma/genética , Hemangioma/patologia , Humanos , Lactente , Cadeias beta de Integrinas/metabolismo , Proteínas dos Microfilamentos , Mutação/genética , Fatores de Transcrição NFATC/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Mol Biol Cell ; 19(11): 4875-87, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799618

RESUMO

Members of the Snail family of transcription factors have been shown to induce epithelial-mesenchymal transition (EMT), a fundamental mechanism of embryogenesis and progressive disease. Here, we show that Snail and Slug promote formation of beta-catenin-T-cell factor (TCF)-4 transcription complexes that bind to the promoter of the TGF-beta3 gene to increase its transcription. Subsequent transforming growth factor (TGF)-beta3 signaling increases LEF-1 gene expression causing formation of beta-catenin-lymphoid enhancer factor (LEF)-1 complexes that initiate EMT. TGF-beta1 or TGF-beta2 stimulates this signaling mechanism by up-regulating synthesis of Snail and Slug. TGF-beta1- and TGF-beta2-induced EMT were found to be TGF-beta3 dependent, establishing essential roles for multiple TGF-beta isoforms. Finally, we determined that beta-catenin-LEF-1 complexes can promote EMT without upstream signaling pathways. These findings provide evidence for a unified signaling mechanism driven by convergence of multiple TGF-beta and TCF signaling molecules that confers loss of cell-cell adhesion and acquisition of the mesenchymal phenotype.


Assuntos
Epitélio/metabolismo , Mesoderma/metabolismo , Fatores de Transcrição TCF/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Cães , Epitélio/efeitos dos fármacos , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Mesoderma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Proteína 2 Semelhante ao Fator 7 de Transcrição , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta3/genética , Regulação para Cima/efeitos dos fármacos
18.
J Cell Biol ; 182(3): 459-65, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18678710

RESUMO

Fibroblast growth factor 23 (FGF-23) and Klotho are secretory proteins that regulate mineral-ion metabolism. Fgf-23(-/-) or Klotho(-/-) knockout mice exhibit several pathophysiological processes consistent with premature aging including severe atrophy of tissues. We show that the signal transduction pathways initiated by FGF-23-Klotho prevent tissue atrophy by stimulating proliferation and preventing apoptosis caused by excessive systemic vitamin D. Because serum levels of active vitamin D are greatly increased upon genetic ablation of Fgf-23 or Klotho, we find that these molecules have a dual role in suppression of apoptotic actions of vitamin D through both negative regulation of 1alpha-hydroxylase expression and phosphoinositide-3 kinase-dependent inhibition of caspase activity. These data provide new insights into the physiological roles of FGF-23 and Klotho.


Assuntos
Apoptose/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Vitamina D/farmacologia , Animais , Atrofia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Humanos , Proteínas Klotho , Camundongos , Transdução de Sinais/efeitos dos fármacos
19.
J Cell Sci ; 120(Pt 9): 1646-53, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17452626

RESUMO

Dissociation of medial-edge epithelium (MEE) during palate development is essential for mediating correct craniofacial morphogenesis. This phenomenon is initiated by TGFbeta3 upon adherence of opposing palatal shelves, because loss of E-cadherin causes the MEE seam to break into small epithelial islands. To investigate the molecular mechanisms that cause this E-cadherin loss, we isolated and cultured murine embryonic primary MEE cells from adhered or non-adhered palates. Here, we provide the first evidence that lymphoid enhancer factor 1 (LEF1), when functionally activated by phosphorylated Smad2 (Smad2-P) and Smad4 (rather than beta-catenin), binds with the promoter of the E-cadherin gene to repress its transcription in response to TGFbeta3 signaling. Furthermore, we found that TGFbeta3 signaling stimulates epithelial-mesenchymal transformation (EMT) and cell migration in these cells. LEF1 and Smad4 were found to be necessary for up-regulation of the mesenchymal markers vimentin and fibronectin, independently of beta-catenin. We proved that TGFbeta3 signaling induces EMT in MEE cells by forming activated transcription complexes of Smad2-P, Smad4 and LEF1 that directly inhibit E-cadherin gene expression.


Assuntos
Caderinas/metabolismo , Células Epiteliais/metabolismo , Palato/metabolismo , Fator de Crescimento Transformador beta3/farmacologia , Animais , Sítios de Ligação/genética , Caderinas/genética , Movimento Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Células Epiteliais/efeitos dos fármacos , Fibronectinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Immunoblotting , Luciferases/genética , Luciferases/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos , Mutação , Palato/citologia , Palato/embriologia , Ligação Proteica , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Transfecção , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Vimentina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Mol Biol Cell ; 17(4): 1871-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16467384

RESUMO

Transforming growth factor beta 1 (TGF-beta1) has been shown to induce epithelial-mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, occludin, and E-cadherin expression within 72 h of exposure to TGF-beta1 in MDCKII cells. It has been suggested that this expression loss occurs through TGF-beta1 in a Smad-independent mechanism, involving MEK and PI3K pathways, which have previously been shown to induce expression of the Snail (SNAI-1) gene. Here we show that these pathways are responsible for loss of tight junctions and a partial loss of E-cadherin. However, our results also demonstrate that a complete loss of E-cadherin and transformation to the mesenchymal phenotype are dependent on Smad signaling, which subsequently stimulates formation of beta-catenin/LEF-1 complexes that induce EMT.


Assuntos
Diferenciação Celular , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Proteínas de Membrana/deficiência , Mesoderma/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Células Cultivadas , Cães , Desenvolvimento Embrionário , Células Epiteliais/citologia , Células Epiteliais/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Mesoderma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...